
Lawrence Livermore
National Laboratory

7000 East Avenue
Livermore CA 94550

Spack: A Package Manager
for HPC Systems

LLNL-ABS-777858

Prepared by LLNL under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Prepared for:

2019 R&D 100
Award Entry

Contact

Todd Gamblin

2 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

Spack: A Package Manager
for HPC Systems

1.	 PRODUCT/SERVICES CATEGORIES

A.	 Title

Spack

B.	 Product Catagory

Software/Services

2.	 R&D 100 PRODUCT/SERVICE DETAILS

A.	 Primary submitting organization

Lawrence Livermore National Laboratory

B.	 Co-developing organizations

Argonne National Laboratory; Columbia University; École Polytechnique Fédérale de
Lausanne; Fermi National Accelerator Laboratory; Iowa State University; Kitware, Inc.;
NASA Goddard Institute for Space Studies, Center for Climate Systems Research; National
Energy Research Scientific Computing Center; Perimeter Institute; University of Hamburg;
University of Illinois at Urbana–Champaign; University of Iowa

C.	 Product brand name

Spack

3

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

D.	 Product Introduction

This product was introduced to the market between January 1, 2018, and March 31, 2019.

This product is not subject to regulatory approval.

E.	 Price in U.S. Dollars

$1.5M (U.S. dollars) average in annual development costs; open source (free to users)

F.	 Short description

Spack is an open source software package management tool for scientific computing. It
simplifies and accelerates building, installing, and customizing complex software stacks. Spack
unifies software deployment for laptops, clusters, and supercomputers, enabling a community
of thousands of users to share and leverage over 3,200 scientific software packages.

G.	 Type of institution represented

Government or independent lab/institute

H.	 Submitter’s relationship to product

Product developer

I.	 Photos

Attached inline

J.	 Video

 https://youtu.be/D0p5xpsboK4

Fig. 1a

https://youtu.be/D0p5xpsboK4

4 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

3.	 PRODUCT/SERVICE DESCRIPTION

A.	 What does the product or technology do?

Spack automates the process of building and installing scientific software on laptops, high-performance
clusters, and supercomputers. Modern scientific software combines libraries written in many
programming languages and is deployed on diverse computing architectures. To achieve the best
performance in these environments, developers build software directly from source code. This allows
compilers to optimize code for the unique hardware it will run on. However, building software by hand is
tedious and error-prone. Many codes comprise tens or hundreds of independently developed libraries.
Downloading, building, and installing all of these programs is too great of a barrier for most scientists,
so high-performance computing (HPC) facilities employ teams of experts to install and manage scientific
software. Spack automates the build workflow without sacrificing software performance or flexibility. It
reduces deployment time for large software stacks from weeks to hours, and it enables end users and
developers to install software without the aid of specialized staff.

Spack consists of three key components: (1) a command-line tool, which allows users to build software
packages on demand; (2) a repository of over 3,200 templated package recipes; and (3) a specification
language with which users can customize builds.

Spack’s Command-Line Tool

To use Spack, simply download it from GitHub. At the
command line, the user can run spack list to view and
query the list of available packages. When they find the
package they want (e.g., hdf5, a library for scientific data
analysis), users can invoke spack install hdf5 to begin
the installation process. Spack downloads source code for
hdf5’s seven dependency libraries (Figure 1), builds them,
installs them, and then does the same for hdf5 itself. Thus,
the hdf5 library is automatically built and optimized for the
user’s platform, and the user can write code that uses it.

Figure 1: The hdf5 library, with 7 dependencies.

5

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

r-rcppeigen

r

r-rcpp

r-matrix

r-lattice

r-caret

r-foreach

r-nlme

r-ggplot2

r-plyr

r-reshape2

r-car

r-modelmetrics

bzip2

diffutils

r-cli

r-assertthat

r-crayon

r-mass

r-plotrix

r-mvtnorm

r-codetools

r-iterators

r-labeling

libxdmcp

pkgconf

util-macros

xproto

tar

glib

libffi

libiconv

gettext

python

perl

pcre

zlib

ncurses

jdk
tcl

tk

icu4c
libjpeg-turbo

libtiff

pango

freetype

readline

cairo

curl

r-mgcv

r-testthat r-praise

r-r6

r-magrittr

r-digest

r-pbkrtest

r-lme4

libxcb

xcb-proto

libpthread-stubs

libxau

r-viridislite

r-sandwich
r-zoo

r-tibble

r-gtable

r-lazyeval r-scales

r-survival

r-pkgconfig

r-rlang

r-pillar

r-nloptr
r-minqa

nlopt

r-adabag

r-mlbench

r-rpart

cmake

openssl

r-fansi

gmp

automake

m4

autoconf

libtool

r-multcomp

r-th-data

py-numpy

openblas

py-setuptools

xz

libxml2

r-glmnet

r-xgboost

r-stringr

r-stringi

r-data-table

sqlite

gdbm

expat

harfbuzz

xextproto

r-modeltools

swig

r-class

r-igraph

r-irlba

libsigsegv

xtrans

libx11 inputproto

kbproto

r-e1071

flex

help2man
bison

gperf

r-kernlab

r-mda

r-matrixmodels

pixman

libpng

nasm

sed

r-colorspace

r-sparsem

fontconfig

font-util
r-quantreg

r-nnet

r-randomforest

r-pls

gobject-introspection

r-utf8

r-kknn

r-strucchange

r-rminer

r-party

r-cubist

r-coin

r-munsell

r-rcolorbrewer

r-dichromat

To accomplish the same tasks manually, the user would need to read hdf5’s documentation, learn
about its dependencies, find their websites, and download source code for all of them. The user would
then manually configure, build, and install all of these dependencies along with the hdf5 library. Each
package may use a different build system, and each build system is likely to require its own package-
specific parameters and options.

Worse, packages may require specific versions of their dependencies, or they may require dependencies to
use build-time options to enable specific features. If a user installs the wrong version, they will discover after
the fact that the package’s dependents are incompatible with it, and they will have to rebuild. Likewise, if the
package is configured in a way that conflicts with dependents’ requirements, it will need to be rebuilt. Even
if the build process is executed perfectly, HPC users expect to be able to use packages with many different
compilers and MPI (message passing interface) implementations, so the whole process must be repeated
for each unique compiler/MPI combination. Moreover, when developers build packages with many options
by hand, they often forget exactly how different packages were configured. Without detailed record keeping,
it can be extremely difficult to diagnose issues with the software, or to try new configurations systematically
(e.g., when tuning for performance).

Building all configurations of even a small package like hdf5—with relatively few dependencies—can take a very
long time. Larger packages like rminer (Figure 2) can have over 150 dependencies, and it is not reasonable to
install a package like this without the on-demand automation that Spack provides via simple commands.

						 Figure 2: rminer package, with 150 dependencies.

6 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

Spack’s Package Repository

Spack is able to build complex packages automatically thanks to a large community of contributors. At the
time of this submission, Spack has over 400 contributors who add recipes—or package files—to its built-in
package repository. The community has been able to grow so large because Spack makes packages easy
to write. Package files are written in Python, which is extremely popular and widely known in the HPC
community. On top of Python, Spack provides its own embedded domain-specific language (DSL), which is
templated so that package scripts can support many configurations. This allows packages to be simple yet
flexible enough for HPC users.

Figure 3 shows an example package file for a Lawrence Livermore National Laboratory (LLNL) deterministic
transport mini-application called Kripke. There are only 18 lines of code in this package, but it allows Kripke
to be built with different MPI versions, different compilers, and other parameters. The directives in this file
tell Spack which versions of Kripke are available, which build options (“variants”) are possible, and which
dependencies (i.e., other packages) are required to build Kripke. The cmake_args and install methods
contain parameterized build instructions that describe how to interact with the HPC build system and install
the package when users request different configurations. Here, the user-specified values for the openmp
and mpi variants are passed as parameters to Kripke’s build system. While most Spack packages can be
short like this one, logic in the install method can be arbitrarily complex if needed. This allows Spack to
handle the many nonstandard package build systems in HPC.

Figure 3: Package for LLNL’s Kripke code.

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle
 transport proxy/mini app.
 """
 homepage = "https://computing.llnl.gov/projects/co-design/kripke"
 url = "https://computing.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version('1.2.3', md5='485e6dcdf7cf5d76dca3dd8177b9f430')
 version('1.1', md5='7fe6f2b26ed983a6ce5495ab701f85bf')

 variant('mpi', default=True, description='Build with MPI.')
 variant('openmp', default=True, description='Build with OpenMP enabled.')

 depends_on('mpi', when='+mpi')
 depends_on('cmake@3.0:', type='build')

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%d' % ('+openmp' in self.spec),
 '-DENABLE_MPI=%d' % ('+mpi' in self.spec),
]

 def install(self, spec, prefix):
 # Kripke does not provide install target, so we have to copy
 # things into place.
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

7

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Other package management tools do not have Spack’s level of customization; they typically only allow a
single configuration of each package—for instance, only the default configuration and default version.
Spack’s package templates specify the possible ways to build a package, and users build packages in the
manner that suits their needs without needing to learn the configuration details of every package. When
Spack installs packages, it still records detailed provenance about all configuration parameters, so that
builds can be queried, diagnosed, and reproduced later, if needed.

Spack’s Specification Syntax

While Spack package files are written in Python, users of the spack command-line tool do not need to
understand Python or HPC build systems to leverage the power of Spack’s package repository. For users,
Spack provides an expressive specification language that allows users to instantiate package templates.
The language is telescoping—that is, it allows users to opt for default installations in simple cases while
also allowing them full control over the build process if they require more complicated configurations. The
specification language is designed to be simple—it is not a full programming language, and while packagers
will need some experience with Python, end users of the Spack tool do not need to know Python at all.

Figure 4 gives a series of examples. As described above, if a user wants to install the standard hdf5 library,
they simply run the command spack install hdf5. Spack will choose the latest versions of hdf5 and its
dependencies, and the user does not need expertise in these details. If the user wants a particular version of
the hdf5 library and/or the gcc compiler, they can indicate this in the command line—for instance, spack
install hdf5 %gcc@7.2.0. Spack’s syntax also accommodates other build options such as enabling
additional features that are disabled by default (+fortran), specifying values for compiler flags (cflags=),
and designating a target build architecture (target=). If a user wants to see a list of available versions and
options for hdf5, they can simply run spack info hdf5—they do not need to be familiar with hdf5’s build
system or to have any prior experience with the package.

Figure 4: Spack’s package specification (spec) language.

Spack syntax Meaning
hdf5 Install the hdf5 package

hdf5@1.10.5 Install hdf5 with specific version 1.10.5

hdf5@1.10.5 %gcc&7.2.0 Install hdf5 1.10.5 using the gcc compiler version 7.2.0

hdf5@1.10.5 %gcc&7.2.0 +fortran Install hdf5 1.10.5 with gcc 7.2.0 and Fortran
support enabled

hdf5@1.10.5 cflags="-03 -fast" Install hdf5 1.10.5 with specific compiler flags

hdf5@1.10.5 target=haswell Install hdf5 1.10.5, optimized for Intel Haswell chips

hdf5@1.10.5 ˆmpich@3.2 %gcc@7.2.0 Install hdf5 1.10.5, and link with the mpich MPI
implementation at version 3.2, built with gcc 7.2.0

8 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

Spack’s syntax is expressive enough that these options can be applied to dependencies in addition to the
root package. For example, many implementations of MPI exist, and Figure 1 shows that one of hdf5’s
dependencies is openmpi. A user can easily choose to build hdf5 with a different MPI implementation (e.g.,
mpich) by running spack install hdf5 ^mpich. The ^ character here can be read as “depends on”.
The user can specify the version, compiler, variants, and other options for mpich on the command line
using the same syntax as for hdf5. Moreover, the user does not have to specify constraints for all of hdf5’s
dependencies, only the ones they care about. Thus, while the user has control over the entire package
specification, they do not need to be familiar with the software package’s complete dependency graph to
install it successfully. Users can limit their concern to the details they care about. Spack handles the rest.

Spack’s specification language is useful not only for single commands; it also enables the configuration of
large software stacks to be versioned and managed in special spack.yaml files. In the examples in Figure
4, each command installs a single package and its dependencies. Spack allows multiple specifications to
be bundled together in a single spack.yaml file (Figure 5), which can be checked into version control so
that developers can collaborate on common configurations. The entire contents of this file can be built and
installed reproducibly with a single spack install command, and Spack ensures that each specification and
its dependencies can coexist in the same environment. This feature is useful at large HPC centers, where
thousands of packages may need to be installed at once.

Figure 5: A spack.yaml file enables users to concisely express
an entire software stack with specific configurations.

Such configuration flexibility is also useful for building containers. Container solutions like Singularity,
Docker, and Charliecloud (winner of a 2018 R&D 100 Award) are becoming increasingly popular for
bundling HPC applications. Using a single spack.yaml file and a single Dockerfile (Figure 6), a user can
build a container image with many packages by writing only a few lines of code. Without Spack, the same
scripts would require hundreds or thousands of lines of script code to build all of the components, making
the container recipes hard to maintain. Spack simplifies the container workflow and allows developers to
collaborate easily on a common software stack.

 spack:
 specs:
	 - hdf5 @1.8.16
	 - openmpi fabrics=libfabric
	 - nalu

9

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Figure 6: A simple Dockerfile that uses spack.yaml to install a large number of packages. To build such
a stack manually would require hundreds of lines of script code to download and install each package.

Impact and Availability

From laptops to small clusters to the world’s largest supercomputing sites, the need to rapidly build and
deploy software stacks is widespread. Todd Gamblin created the first prototype of Spack to automate the
many tedious software builds he and LLNL colleagues were forced to do manually. Development quickly
became a grassroots effort as others began to use it. Today, Spack is widely available as open source
software. Features and improvements are regularly being added to Spack by a broad community of
contributors. The most recent release (version 0.12) has added key improvements that have led to broad
adoption at top-tier HPC centers and influential HPC organizations.

Figure 7: ORNL’s Summit supercomputer, ranked #1 on the Top500 list of the world’s fastest supercomputers.

FROM spack/centos:7

WORKDIR /build
COPY spack.yaml .
RUN spack install

10 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

Spack allows software packages comprising hundreds of dependency libraries to be built and installed
quickly and reliably, which has led to its adoption by a number of prominent code teams, supercomputing
centers, and software development communities. For example, Oak Ridge National Laboratory (ORNL)
replaced an existing deployment process with Spack for their #1-ranked Summit supercomputer (Figure 7).
ORNL deploys over 1,300 software packages for users of the system, and building all of this software used
to require roughly 2 weeks of work. With Spack, the process is now automated and can be completed in 12
hours. Summit’s entire stack can now be redeployed overnight.

ARES is an LLNL multi-physics code, used in mission-critical inertial confinement fusion (ICF) simulations.
ARES relies on a 46-package software stack (Figure 8). Spack has enabled the team to rapidly test this stack
with new compilers and configurations in preparation for new HPC platforms and environments before they
arrive. The developers now build and test 36 different configurations of ARES nightly. Before Spack became
available, this volume and range of testing were not possible to execute automatically, and the development
team waited to test new compilers until they were needed. Now, because of Spack, the additional testing
is essentially free. The work of porting the code to a new machine, which used to take weeks, now only
takes 3 hours thanks to Spack’s automation and ARES’s increased robustness from testing. The ARES lead
build engineer stated, “It is inconceivable how we would handle the growing number of interdependencies
between frequently updated library versions, GPU interfaces, and compiler versions without Spack.”

Figure 8: LLNL’s ARES multi-physics code and its 46 dependency libraries (plotted using Spack).

Spack is now used for software deployment on 6 of the top 10 supercomputers in the world1. It has also
been adopted and the standard deployment tool of several national-level projects. The U.S. Exascale
Computing Project (ECP) is a $300M/year effort tasked with building a capable software stack for future
exascale supercomputers. Within ECP, Spack is used to coordinate a hierarchy of software releases for
multiple supercomputing platforms. ECP is a collaboration of over 1,000 researchers from 17 national
laboratories, and ECP staff use Spack for both local and ECP-wide software releases. Spack will eventually be

1	 According to the Top500 list of world’s fastest supercomputers at https://top500.org.

ARES

tcl

tkscipy

python

cmake

hpdf

opclient

boost

zlib

numpy

bzip2

LAPACK

gsl

HDF5

gperftools papi

GA

bdivxml

sgeos_xmlScallop

rng perflib memusage timers

SiloSAMRAI

HYPRE

matprop

overlink qd

LEOS

MSlibLaser

CRETIN

tdf

Cheetah DSD

Teton

Nuclear

ASCLaser

MPI

ncurses

sqlite readline openssl BLAS
Types of Packages

Physics Utility Math External

https://top500.org

11

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

used to deploy over 90 different software products within ECP to HPC centers across the U.S. Department of
Energy (DOE), and it is critical to the success of the ECP core mission.

In Japan, Spack has been selected as the de-facto deployment tool for the upcoming Fugaku
supercomputer, formerly known as Post-K. This nearly billion-dollar, national-level project will deliver the
first supercomputer based on the new ARM scalable vector extensions (SVE) instruction set. Spack was
chosen for this project due to the ease with which Fujitsu and RIKEN staff were able to use and adapt Spack
for ARM platforms. Its templated package recipes made software deployment on this new architecture an
extremely easy task compared to other systems that required package recipes to be entirely rewritten.

Even outside of HPC centers, Spack has had tremendous impact. The high-energy physics (HEP) community,
based at Fermilab in the U.S. and CERN (the European Organization for Nuclear Research) in Switzerland,
builds software infrastructure that is comparable in complexity to DOE’s. In this community, Spack has been
adopted as an end-to-end development tool. Developers use it locally to build their dependencies, and
administrators use it project-wide to deploy software to HEP’s worldwide network of compute clusters. The
HEP community has been so pleased with Spack’s capabilities that they have contributed significant features
to the tool—they believe it is not only useful but also a worthy long-term investment.

These examples indicate an exciting trajectory. Since its initial open source release, Spack’s capabilities, use
cases, and community engagement have increased by orders of magnitude. In particular, the 2018 release
(version 0.12; see Product Comparison below) enables reproducible builds with improved concretization and
lockfiles, features more packages and configurations than ever before, and future-proofs Spack’s growth via a
permissive license—a significant effort that required buy-in from hundreds of contributors. These combined
enhancements convinced leadership at ECP, Fujitsu, and RIKEN to adopt Spack for HPC software deployment.

Worldwide Adoption and Outreach

Spack’s adoption is not confined to just the high end of the HPC market. Its design makes it usable by
scientists on laptops, workstations, and small clusters in addition to the elite institutions of the world.
Indeed, from-source builds are difficult to manage, but they have long been the standard way of distributing
HPC software. Spack is the only tool that gives users the full flexibility and power of building by hand
along with the automation required to make it quick and easy. Spack’s specification syntax, coupled with
templated packages, allows users to rapidly build a large set of package configurations, to quickly test and
converge on the fastest configuration, and to build existing package recipes in new environments. Because
of its ease of use, Spack’s adoption has been widespread, and we have striven to lower the barriers to
contribution and to encourage community participation in the project.

12 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

Figure 9: Contributions to Spack over time, by organization. Top: contributions to the Spack core tool;
Bottom: contributions to Spack’s package repository. (LOC = lines of code.)

2

0

1

3

2

0

1

4

2

0

1

5

2

0

1

6

2

0

1

7

2

0

1

8

2

0

1

9

2

0

2

0

0

10000

20000

30000

40000

50000

60000

LOC over time in core by org

LLNL

EPFL

ANL/UIUC

Kitware

Fermilab

ANL

Heidelberg

FAU

NERSC

NASA-GISS

Hamburg

Max Planck

ORNL

TAMU-CC

Cardiff

SNL

Iowa State

NCSA

Australia BOM

HZDR

Other

2

0

1

3

2

0

1

4

2

0

1

5

2

0

1

6

2

0

1

7

2

0

1

8

2

0

1

9

2

0

2

0

0

20000

40000

60000

80000

LOC over time in packages by org

ANL/UIUC

Iowa State

LLNL

Iowa

EPFL

ANL

LANL

FAU

Kirchhoff

Heidelberg

Genentech

Hamburg

OpenFOAM

SJTU

Fermilab

PerimeterInst

3vGeomatics

ORNL

NREL

HZDR

Other

13

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Figure 9 shows the total lines of code in the Spack tool and in its package repository, grouped by
organization. Spack now has over 400 contributors from over 100 organizations. Though the project started
at LLNL, the majority of contributions to Spack’s packages now come from organizations including other
laboratories, academia, and industry. LLNL still maintains the bulk of the core tool with a number of close
collaborators. Spack’s features, innovative design, and simple package DSL have enabled us to crowd-source
package maintenance solutions and support this thriving community.

In addition to its core contributors, Spack has thousands of end users all over the world. In December 2018,
over 1,100 users browsed Spack’s documentation site. Figure 10 shows their locations around the globe. At
the time of writing, this number had grown to over 2,000 monthly active users. Spack’s worldwide traction
is a testament to its usefulness within the HPC field and beyond. Spack has filled a longstanding gap in the
scientific software ecosystem and saved users countless hours of tedious manual configuration and iteration.

Community success relies in a large part on user outreach and education, which has always been crucial
to Spack’s development. The leadership team travels to user sites around the world (such as to RIKEN,

Figure 10: Unique users on Spack’s documentation website in a single month. At the end
of 2018, Spack’s documentation was visited by over 1,100 users per month.

14 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

shown in Figure 11), offering hands-on instruction and step-by-step tutorials. Spack workshops and
“birds of a feather” gatherings are ubiquitous at several premier international HPC conferences, including
Supercomputing and ISC High Performance (see the tutorials list under References below). A dedicated
Twitter account (@spackpm) and a continually active Slack chat instance (spackpm.slack.com) provide
additional ways to connect with the Spack community.

B.	 How does the product operate?

When a user invokes spack install hdf5, Spack takes a number of steps behind the scenes to ensure
that hdf5 is properly installed. Essentially, Spack must look at the user’s request, determine what to build,
and then build it. At first glance, this seems trivial, but the devil is in the details. User specifications are
vague, in that there are many possible configurations of hdf5, and Spack must find a valid one. Moreover,
Spack allows many combinations of packages to be built, but most operating systems (OS) and build tools
are configured so that, by default, the system versions of packages are preferred over customized versions.
These settings can easily creep into builds and cause incompatibilities, and they make it very difficult for one
user to get the same results as another when installing a piece of software. Spack is designed to deliver a
one–two punch: (1) concretization of specifications and (2) isolated, reproducible package builds.

Figure 11: LLNL’s Spack developers met with the RIKEN team in Japan in April 2019.

https://twitter.com/spackpm
https://spackpm.slack.com

15

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Concretization

Earlier, we discussed Spack’s two main user-facing pieces: the specification syntax, which allows users to
express their requirements when they install packages, and package files, which provide templated recipes to
build package specifications. We described how a user could quickly type a command using the specification
syntax, and have it built using instructions from package files. We mentioned that users need only provide
the details that they care about, and Spack would handle the rest. The heart of Spack and the key component
that binds specifications and packages together is the concretizer. Put simply, the concretizer is an algorithm
that converts abstract specifications from users into complete, concrete specifications that can be built.

The concretization process is shown in Figure 12. A user invokes spack install hdf5@1.10.5
^mpich@3.2. The specification from the user is converted to a directed acyclic graph with a node for
each of hdf5’s dependencies. Some nodes (hdf5 and mpich) have constraints. In this case, the constraints
limit which versions the packages can be built with (1.10.5 and 3.2, respectively). These are the user’s
requirements from the input specification. Spack constructs a separate graph that encodes constraints from
the package files. It then intersects these constraints package by package and checks each set of constraints
for inconsistencies. Inconsistencies can arise if, for example, the user inadvertently requests two versions
of the same package, or if a package requires (for compatibility reasons) a different version than the user
requested. Likewise, if the package and the user specified different compilers or variants for particular
packages, Spack will stop the build process and notify the user of the conflict.

Figure 12: Spack’s concretization process.

Assuming the intersection succeeds, Spack generates a single graph with the merged constraints
of the user and the package files. Essentially, the user’s request has now been combined with the
collective knowledge of Spack’s contributors. The next part of the concretization algorithm is iterative.
If any node in the graph is a virtual dependency, Spack resolves it to a suitable provider of the virtual
interface, either by creating a new node for the implementation, or by redirecting edges to an existing
provider in the graph. When Spack has a choice of which provider, version, variant, or compiler to
use, it consults user and site preferences to determine the “best” possible choice. This may introduce
































^mpich@3.2

16 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

new dependencies to the graph, so we repeat this process until the graph no longer changes. Once all
parameters for all nodes in the graph have been set, we call the dependency graph concrete.

Concretization is Spack’s way of filling in free variables in the package configuration. When we
designed Spack, we found that users who built software devoted a large amount of code to searching
for software and configuration information on the host system in order to fill in details like this. This
complex code was error-prone and would often find subtly incompatible libraries or unusable versions
of software installed on the system. Spack’s concretization process takes over this task and ensures that
all such decisions are made before the package starts building. This key design aspect of Spack enables
us to rapidly grow our contributor base. Because of concretization, logic in Spack packages can be much
simpler because it only translates a concrete specification to build instructions; complex configuration
decisions are left to Spack.

The concretization process enables another of Spack’s key benefits: reproducibility. As explained
earlier, spack.yaml files (Figure 5) enable an entire software stack to be specified in a single file.
When the specifications in these files are concretized, Spack generates an additional spack.lock file
that records the output of the concretization algorithm. This contains specific version and platform
configuration information for all specifications in the software stack. A user can easily leverage this
spack.lock file to reproduce a software stack exactly as another user built it. The spack.lock file
effectively “locks” the versions, build options, and optimization choices produced when the first user
ran the concretization algorithm.

Isolated, Reproducible Builds

Spack’s internal graph model lets it represent arbitrary software configurations, and concretization allows it
to generate a complete configuration from a partial specification provided by the user. Spack also provides
the infrastructure needed to build these arbitrary configurations. This is not trivial: Most build systems
and OS provide defaults that steer compilers and other tools towards the default versions of libraries and
programs used in a build. Because of this, when users build software by hand, it is easy to accidentally use
incompatible versions of libraries and tools. Spack takes a number of measures—including RPATH linking
and compiler wrappers—to ensure that the build environment is clean, so that two users building the same
concrete specification in different environments are sure to get the same result.

RPATH Linking

When one library needs to call code from one of its dependencies, dependency libraries are found by
looking in default locations set by either the OS or the user. These settings are designed for systems

17

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

where only one version of a given library will be installed, and they can result in incorrect code in
HPC environments, where the same library may need to be built in different, incompatible ways for
different applications. For example, a parallel mesh partitioner may use a parallel version of the hdf5
library, while a different application that uses the mesh may use a sequential version of hdf5. These
two hdf5 versions are incompatible, so one code cannot use the hdf5 version preferred by the other.
This means we cannot run the mesh partitioner in the same environment with the application, so they
cannot be used together in a common workflow.

To avoid this conflict, Spack ensures that all installed libraries “know” which dependencies they were
built with using a technique called RPATH linking. An RPATH is a special location embedded in a library or
executable code that tells the OS where to look for dependencies. Each package installed with Spack has
RPATHs for all of its dependencies, so when it runs, it will always know where to find the right libraries,
and users cannot accidentally run Spack-built programs with conflicting code. Whether managing tens
or hundreds of dependencies, this failsafe solution is extremely useful, as the OS does not know about
user-installed dependencies, and users cannot be expected to remember and configure the locations of
hundreds of library versions.

Compiler Wrappers

To ensure that RPATHs are set on executables and libraries when they are created, and to enable
different compilers to be easily swapped into a build, Spack uses a special wrapper script in its build
environment. This feature prevents a number of errors. First, many default environment settings
from the OS and the user can creep into a build environment. Certain variables like LD_LIBRARY_PATH,
CFLAGS, and CC, which are commonly set by users, can cause a build to inadvertently change its
behavior by using the wrong libraries, the wrong compiler flags, or the wrong compiler. Spack
clears these and other variables from the user environment before it builds, and in place of the
real compilers, it injects its own wrapper scripts. When the build calls the wrapper script as though
it were the real compiler, Spack adds explicit search paths and RPATHs for its own libraries to the
command line before calling the real compiler with the full set of arguments. This process overrides
any environment settings and ensures that Spack packages are built as intended. It also removes part
of the burden of configuration from package authors, as they can leave the configuration of most
building and linking options to the compiler wrappers. Users do not need to write code to add extra
arguments to compilers because Spack has already done so.

In addition to helping isolate builds, Spack’s compiler wrappers allow the user to inject compiler
optimization flags into its builds. This means users can rapidly iterate on optimization settings for their
software stack as well as on other configuration options.

18 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

C. 	 Product Comparison

There are many software package management tools on the market, both in and outside the scientific
computing space. Package management systems have existed since the late 1990s, when products like
RPM and APT were created to manage dependencies among binary packages in Linux distributions. These
and other systems are present in nearly all Linux distributions to this day. While revolutionary at the
time, these package managers assume that users have root privileges on the system; however, users are
usually only allowed unprivileged user accounts on nearly all high-performance clusters. This alone makes
these tools unusable in HPC environments. Spack can operate in a completely unprivileged environment.
System package managers also assume that software is only installed in a single location on the system,
which prevents them from installing multiple configurations of the same package. Further, because they
manage only binary packages, the software distributed with these systems is built without architecture-
specific optimizations in order to be as portable as possible. This prevents them distributing software that
takes advantage of high-performance hardware, like the new hybrid architectures found at many top-tier
supercomputing centers.

Only a few package managers seriously target the scientific computing space: Gentoo, Nix/Guix (two
very similar systems), Conda, EasyBuild, and Spack. Spack’s key advantage over all of these tools is its
flexibility and ability to build arbitrary configurations from scratch. This allows users to build any packages
they like, at any version, and to optimize these packages for the machine. Users do not need to know
any programming to do this; they need only download the Spack tool and learn its specification syntax.
Spack’s flexibility also allows it to target a much broader set of users than do other tools. It is usable by
non-programmers, developers, and administrators, while these other tools have limitations that limit
them to one or another of these groups.

Gentoo is derived from the traditional system package managers described above, but additionally it allows
users to build from source to optimize for specific hardware. Gentoo’s sub-project Gentoo Prefix can be run
in unprivileged mode. However, Gentoo Prefix does not support true multi-version installation, as it limits
software installation to a single location (the “prefix”). Gentoo Prefix is entirely self-contained, which means
that creating a Gentoo environment on an HPC system can take 12 hours or more. To support multi-version
installation, a user would need to install several such environments, which is not tractable and wastes space.
In contrast, a user can install their first package within minutes of downloading Spack.

Nix and Guix are so-called “functional” package managers, allowing packages to be installed in arbitrarily
many configurations. They use similar directory isolation schemes to Spack, but both tools require root
access to the machine to build packages. Further, they do not support a templated package syntax or
anything like Spack’s specification language. Users must learn functional programming languages like
Nix’s custom expression language and Guile, which are not widely known or used in the HPC community

19

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

or the general programming community, and each “package file” in these systems corresponds to a single
configuration. Building new versions, changing configuration options, or swapping in compilers is not
feasible. Further, these tools do not integrate well with the optimized MPI or compiler packages on HPC
systems. Adapting to these systems would require rewriting packages, while Spack can swap in a new
compiler or configuration easily due to its templated packages.

Conda is a binary package installation system rapidly gaining traction in the scientific computing
community. It targets desktop scientific environments, mostly in the Python ecosystem. While Conda
packages a large range of scientific software, it does not build packages from source. Packagers must
build Conda packages separately from the tool itself. They can do this by submitting to a build farm in
the cloud, but this makes Conda ill-fitted for developers, who need to manage dependency versions and
configurations at very fine granularity. It also makes it difficult for Conda packages to be optimized for
the machines they run on. Conda’s mainline packages include limited machine-specific optimization,
and special “channels” are available with GPU versions of some packages. However, making packages
from different Conda channels work together is difficult because the binaries are built in incompatible
ways. Porting to new types of machines with Conda is difficult because Conda packages must be
built with an entirely separate tool. Further, Conda does not provide any integration with the high-
performance MPI implementations used on HPC systems, so its packages typically do not use the
resources available on HPC machines and, therefore, perform poorly.

Spack’s main competitor in the HPC space is EasyBuild. EasyBuild is a software management system designed
for HPC administrators to simplify software deployment. However, EasyBuild does not offer the flexibility
of package installation that Spack does. Like Nix and Guix, each EasyBuild package configuration requires a
configuration file, and no templating feature exists. EasyBuild fixes versions for its dependencies, so if users
want to generate new versions of packages on demand, they must edit not just one but potentially tens or
hundreds of configuration files to change dependency versions across the whole software stack. Indeed,
EasyBuild supports around 1,700 software packages (compared to Spack’s 3,200), but it requires over 7,000
configuration files to support a more limited number of configurations of these packages.

Using different compilers and MPI versions within EasyBuild also requires generating a new, full stack of
configurations. Essentially, EasyBuild makes the users perform the concretization process that Spack has
automated. EasyBuild has only limited support for external packages; it allows externals to be included in
builds if they are loadable via an environment module, but Spack allows essentially any external package to
be integrated with builds, even if no module is available. EasyBuild has managed to make inroads among
HPC administrators, but it has not appealed to developers and end users the way Spack has.
Even among administrators, EasyBuild is typically used among small cluster administrators who are

20 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

happy with settings close to the default configuration. Spack has made inroads both with small cluster
administrators and among developers and administrators of high-end machines, where quickly
customizing the stack is necessary and highly valued.

In addition to the features already mentioned, Spack is designed to be easy to install. Because Spack is
often the first tool that users download in order to install other packages, it is important that Spack itself
have very few external dependencies. We have therefore gone to great lengths to include all of Spack’s
needed dependencies in the Spack distribution. All the user needs to do is clone a single repository and
have Python installed (along with some basic Unix utilities provided in all major distributions), and Spack
is ready to run immediately. It does not require compilation, nor does it rely on environment modules
to do its builds. EasyBuild, on the other hand, requires that the user have the environment module
system and several other dependencies installed in advance. These requirements are common in HPC
environments but make installation of EasyBuild difficult on laptops or other workstations. Further,
EasyBuild requires that the user download not one but four distinct repositories and set numerous
environment variables before it can be used.

Spack is often compared to the environment module system, which allows administrators to easily
expose a large number of package configurations to users. Environment modules are popular on HPC
systems because they let users easily load different versions of packages into their environment. However,
environment modules are not a package management system—they only manage the user’s environment
after packages are installed. There is no build support, common naming scheme, or central repository
of environment modules; facilities have historically written their own modules by hand after installing
packages. Spack and EasyBuild both support automatically generating module files for all installed packages,
and eliminate the need for facilities to maintain these files manually.

Among competing package managers, Spack is the only tool that offers reproducible lock files (spack.lock,
Figure 6). This feature is becoming increasingly popular among language-specific package managers (e.g.,
npm, cargo, bundler, pipenv), which are geared toward developers. These tools deal only with locking
package versions and only within a single language’s software ecosystem. No existing tool provides
this configuration-locking functionality for multiple compilers, multiple languages, and multiple build
configurations like Spack. Moreover, no other tool provides this functionality for C, C++, or Fortran—
the key languages used in high-performance programming. These languages have many different
implementations and no standard build system, yet Spack provides a common configuration language for
all of them and is the first system to allow builds to be reproduced with a workflow as simple as those for
language-specific tools.

Finally, Spack’s license is a major advantage over many of its competitors. While all of the systems
described here are free and open source software, only Spack and Conda use permissive licenses that

21

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

permit nearly unrestricted use of the software. Spack is dual licensed under either the Apache-2.0
or MIT license. RPM, APT, Gentoo, Guix, and EasyBuild all use the GNU General Public License
(GPL), which means that organizations that build on them must release the source code for any
software that uses the package manager. Nix uses the Lesser GPL (LGPL), which requires that
organizations release the source code only for changes to Nix itself. As a result, many companies
are wary of integrating these tools into their software stacks, as license compliance can be murky
when integrating GPL-licensed code into proprietary systems. Spack is licensed to be easily used
by as broad an audience as possible. This was a strategic choice; we aim to be vendor-friendly so
that Spack can be easily integrated into high-end HPC systems. We believe our licensing strategy
enables us to grow Spack’s contributor base as rapidly as possible, and this will ultimately
result in better open source software regardless of whether some contributors choose to build
proprietary solutions on top of Spack.

C.	 Competitors

Product Manufacturer License
Spack Spack Project Apache 2.0 or MIT

RPM Red Hat GPL-2.0

APT Debian Project GPL-2.0

Gentoo Gentoo Foundation GPL-2.0

Nix Nix Project LGPL-2.1

Guix GNU Project GPL-3.0

Conda Anaconda, Inc. BSD-3-clause

EasyBuild HPC University of Ghent GPL-2.0

Lmod Texas Advanced Computing
Center (TACC)

MIT

Environment Modules INRIA Bordeaux LGPL-2.1

22 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

D.	 Comparison summary

Feature Spack RPM/APT Gentoo Nix/Guix Conda EasyBuild

Users and systems

Target audience
Users,

developers,
admins

Admins,
developers

Admins,
developers

Admins,
developers Users Admins

Platform support Linux,
MacOS, Cray Linux Linux Linux,

MacOS

Linux,
MacOS,

Windows

Linux,
Cray

Usable without root
privilege

Installation requirements Python
Included

with Linux
distribution

Many-hour
build

Download
binary

Download
binary

Extensive,
difficult to

install

Multi-configuration
installation

Build process and configuration

Command-line build
specification syntax

Reproducible lockfiles

Build from source

Optimized builds Limited

RPATH linking Optional

Compiler wrappers inject
optimization flags

Easily swap compilers with
wrappers

Flexible concretization

Optional dependencies

Ease of changing stack

Single
command

Re-write
packages

Re-write
packages

Re-write
packages

Re-write
packages

Re-write
packages

Package repository

Number of packages 3,200+ 10,000+ 10,000+ 10,000+ 5,000+ 1,700+

Package recipe language Python DSL RPM SPEC
format RPM-like Nix expressions

Guile (Guix) RPM-like Python

Templated packages

Binary packages

Relocatable binaries

Integrate external system
packages

Via Modules
only

23

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

One benefit of Spack’s large and varied community is that opportunities always arise to
learn about and address new use cases. Having a global user base also means Spack’s
limitations come to the foreground quickly, so we are able to prioritize and test new
features as development evolves. Currently Spack has one primary limitation: The
concretizing feature uses heuristics instead of a full backtracking solve for NP-hardness—a
class of nondeterministic polynomial problems resolved by Spack’s decision algorithms. In
other words, dynamic dependency resolution can occasionally fail to find a solution when
one is possible, and sometimes Spack may rebuild new versions of packages when it does
not need to. Fortunately, in most cases, the current concretization algorithm is sufficient,
and we are reworking the algorithm for our next release. Spack’s efficient handling of the
overall work of building and installing a complex scientific software stack saves users many
hours of tedious labor, and the user’s effort to overcome this limitation manually is minor.
When the concretizer fails to find a solution, a user can simply supply more constraints in
Spack’s specification language to help it find the desired configuration.

E.	 Limitations

4.	 SUMMARY

Building complex software is a challenge even for seasoned professionals. Next-
generation HPC architectures will only increase the complexity and dependencies
of scientific software. This in turn will increase demands on software deployment
time and configurations. As a software package manager for high-performance
scientific computing applications, Spack is easy, versatile, and scalable. Spack’s main
goal is to simplify the process of managing scientific software for administrators,
developers, and end users alike. To do this, Spack automates the build process
for scientific software packages and allows users to easily download, install, and
manage packages with hundreds of dependencies. It automates the build workflow
so that users can focus on their scientific work and speeds up installation and
manages multiple configurations efficiently. Spack is ready to run immediately
after download, and users benefit from the combined knowledge of the Spack
community. Spack’s flexibility and large community have made achievements at
major supercomputing centers possible. Spack originated at LLNL, which continues
to support it. Once Spack became available as open source, other organizations
have contributed to its ongoing development.

24 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

5.	 CONTACT INFORMATION

Principal investigator from each of
the submitting organizations:

Name: Todd Gamblin
Title: Computer scientist, Spack PI
Organization: Lawrence Livermore National Laboratory
Phone: 925-422-9319
Email: gamblin2@llnl.gov

Name: Adam Stewart
Title: PhD student
Organization: Argonne National Laboratory/
University of Illinois at Urbana–Champaign
Phone: 607-972-5364
Email: adamjs5@illinois.edu

Name: Massimiliano Culpo
Title: Software developer
Organization: École Polytechnique Fédérale de Lausanne
Phone: 41-21-69-31994
Email: massimiliano.culpo@epfl.ch

Name: Patrick Gartung
Title: Programmer analyst
Organization: Fermi National Accelerator Laboratory
Phone: 630-840-3832
Email: gartung@fnal.gov

Name: Levi Baber
Title: Research IT director
Organization: Iowa State University
Phone: 515-294-2907
Email: baber@iastate.edu

Name: Aashish Chaudhury
Title: Technical leader
Organization: Kitware, Inc.
Email: aashish.chaudhary@kitware.com

Name: Elizabeth Fischer
Title: Associate research scientist
Organization: NASA Goddard Institute for Space
Studies, Center for Climate Systems Research/
Columbia University
Phone: 212-678-5581
Email: elizabeth.fischer@columbia.edu

Name: Mario Melara
Title: Computer systems engineer
Organization: National Energy Research Scientific
Computing Center
Phone: 925-858-0436
Email: mamelara@lbl.gov

Name: Erik Schnetter
Title: Research technologies group lead
Organization: Perimeter Institute
Phone: 519-569-7600 x7032
Email: eschnetter@perimeterinstitute.ca

Name: George Hartzell
Title: Bioinformatics, software engineering,
and dev-ops
Organization: Independent consultant
Email: hartzell@alerce.com

25

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Name: Aashish Chaudhury
Title: Technical leader
Organization: Kitware, Inc.
Email: aashish.chaudhary@kitware.com

Name: Elizabeth Fischer
Title: Associate research scientist
Organization: NASA Goddard Institute for Space
Studies, Center for Climate Systems Research/
Columbia University
Phone: 212-678-5581
Email: elizabeth.fischer@columbia.edu

Name: Mario Melara
Title: Computer systems engineer
Organization: National Energy Research Scientific
Computing Center
Phone: 925-858-0436
Email: mamelara@lbl.gov

Name: Erik Schnetter
Title: Research technologies group lead
Organization: Perimeter Institute
Phone: 519-569-7600 x7032
Email: eschnetter@perimeterinstitute.ca

Name: George Hartzell
Title: Bioinformatics, software engineering,
and dev-ops
Organization: Independent consultant
Email: hartzell@alerce.com

Name: Michael Kuhn
Title: Scientific computing staff
Organization: University of Hamburg
Phone: 49-40-460094-108
Email: michael.kuhn@informatik.uni-hamburg.de

Name: Glenn Johnson
Title: HPC architect
Organization: University of Iowa
Email: glenn-johnson@uiowa.edu

Media and public relations person who will interact
with R&D’s editors regarding entry material:

Name: Connie Pitcock
Title: Business Development and
Marketing Associate
Organization: Lawrence Livermore
National Laboratory
Phone: 925-422-1072
Email: pitcock1@llnl.gov

Person who will handle banquet
arrangements for winners:

Name: Todd Gamblin
Title: Computer scientist, Spack PI
Organization: Lawrence Livermore
National Laboratory
Phone: 925-422-9319
Email: gamblin2@llnl.gov

6.	 AFFIRMATION

By submitting this entry to R&D Magazine you affirm that all information submitted as a part of, or
supplemental to, this entry is a fair and accurate representation of this product. You affirm that you
have read the instructions and entry notes and agree to the rules specified in those sections. For
more information, please call 973-920-7032 or email rdeditors@advantagemedia.com

26 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

7.	 REFERENCES

Peer-Reviewed Papers

1. Mario Melara, Todd Gamblin, Gregory Becker, Robert French, Matt Belhorn, Kelly Thompson, Peter Scheibel,
and Rebecca Hartman-Baker. Using Spack to Manage Software on Cray Supercomputers. In Cray Users
Group (CUG 2017), Seattle, WA, May 7–11, 2017.

2. Gregory Becker, Peter Scheibel, Matthew P. LeGendre, and Todd Gamblin. Managing Combinatorial Software
Installations with Spack. In Second International Workshop on HPC User Support Tools (HUST’16), Salt Lake
City, UT, November 13, 2016.

3. Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R. de
Supinski, and W. Scott Futral. The Spack Package Manager: Bringing Order to HPC Software Chaos. In
Supercomputing 2015 (SC15), Austin, TX, November 15–20, 2015. (22% acceptance rate.)

Presentations and Meetings

4. Todd Gamblin, Gregory Becker, Michael Kuhn, and Massimiliano Culpo. Spack Community BoF. In ISC High
Performance 2019, Frankfurt, Germany, June 18, 2019.

5. Massimiliano Culpo. Spack: A Package Manager for Scientific Software. In EasyBuild User Meeting, Ghent,
Belgium, February 1, 2019.

6. Todd Gamblin, Gregory Becker, Matthew P. LeGendre, and Peter Scheibel. Spack Roundtable Discussion. In
Exascale Computing Project 3rd Annual Meeting, Houston, TX, January 16, 2019.

7. Todd Gamblin, Adam J. Stewart, Johannes Albert von der Gonna, Marc Perache, Matt Belhorn, and Veronica
Vergara. Spack Community BoF. In Supercomputing 2018 (SC18), Dallas, TX, November 13, 2018.

8. Todd Gamblin. Decluttering HPC Software Chaos with SPACK. In SIAM Conference on Parallel Processing for
Scientific Computing (PP18), Minisymposium on Productive Programming using Parallel Models, Tools and
Scientific Workflows, Tokyo, Japan, March 7, 2018.

9. Todd Gamblin, William Scullin, Matt Belhorn, Mario Melara, and Gerald Ragghianti. Spack State of the Union.
In Exascale Computing Project 2nd Annual Meeting, Knoxville, TN, February 6–8, 2018.

10. Todd Gamblin. Binary Packaging for HPC with Spack. In Free and Open source Software Developers’
European Meeting (FOSDEM18), Brussels, Belgium, February 4, 2018. LLNL-PRES-745747.

11. Todd Gamblin. How Compilers Affect Dependency Resolution in Spack. In Free and Open source Software
Developers’ European Meeting (FOSDEM18), Brussels, Belgium, February 3, 2018. LLNL-PRES-745770.

12. Todd Gamblin. Recent Developments in Spack. In EasyBuild User Meeting, Amsterdam, The Netherlands,
January 30, 2018.

13. Todd Gamblin. Tutorial: Managing HPC Software Complexity with Spack. In HPC Knowledge Meeting
(HPCKP17), San Sebastian, Spain, June 16, 2017. 2 hours.

14. Massimiliano Culpo. Spack: A Package Manager for Supercomputers, Linux, and MacOS. In HPC Advisory
Council Swiss Conference, Lugano, Switzerland, April 10–12, 2017.

27

www.llnl.gov | info@llnl.gov | SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS

LAWRENCE LIVERMORE NATIONAL LABORATORY | 2019 R&D 100 Award Entry

Tutorials

15. Todd Gamblin, Gregory Becker, Massimiliano Culpo, Mario Melara, Peter Scheibel, and Adam J.
Stewart. Managing HPC Software Complexity with Spack. In Supercomputing 2019 (SC19), Denver, CO,
November 18, 2019. Half day (to appear).

16. Levi Baber, Adam J. Stewart, Gregory Becker, and Todd Gamblin. Managing HPC Software Complexity
with Spack. In Practice and Experience in Advanced Research Computing (PEARC19), Chicago, IL, July
31, 2019. Half day (to appear).

17. Todd Gamblin and Gregory Becker. Spack Tutorial. In 1st Workshop on NSF and DOE High Performance
Computing Tools, Eugene, OR, July 10, 2019. Full day (to appear).

18. Todd Gamblin, Gregory Becker, Michael Kuhn, and Massimiliano Culpo. Managing HPC Software
Complexity with Spack. In ISC High Performance 2019, Frankfurt, Germany, June 16, 2019. Half day.

19. Gregory Becker. Managing HPC Software Complexity with Spack. In HPC Day, Frankfurt, Germany, June
13, 2019. Goethe-Universitat. Half day.

20. Todd Gamblin, Gregory Becker, Peter Scheibel, Matt Legendre, and Mario Melara. Managing HPC
Software Complexity with Spack. In Exascale Computing Project 3rd Annual Meeting, Houston, TX,
January 14, 2019. Full day.

21. Todd Gamblin, Gregory Becker, Massimiliano Culpo, Peter Scheibel, Matt Legendre, Mario Melara, and
Adam J. Stewart. Managing HPC Software Complexity with Spack. In Supercomputing 2018 (SC18),
Dallas, TX, November 12, 2018. Full day.

22. Todd Gamblin, Gregory Becker, Peter Scheibel, Matt Legendre, and Mario Melara. Managing HPC
Software Complexity with Spack. In Exascale Computing Project 2nd Annual Meeting, Knoxville, TN,
February 6–8, 2018. Half day.

23. Todd Gamblin, Gregory Becker, Massimiliano Culpo, Gregory L. Lee, Matt Legendre, Mario Melara, and
Adam J. Stewart. Managing HPC Software Complexity with Spack. In Supercomputing 2017 (SC17), Salt
Lake City, UT, November 13, 2017. Full day.

24. Gregory Becker, Matt Legendre, and Todd Gamblin. Spack for HPC. Livermore Computing, Lawrence
Livermore National Laboratory, Livermore, CA, April 6, 2017. Half day.

25. Todd Gamblin, Massimiliano Culpo, Gregory Becker, Matt Legendre, Greg Lee, Elizabeth Fischer, and
Benedikt Hegner. Managing HPC Software Complexity with Spack. In Supercomputing 2016 (SC16), Salt
Lake City, UT, November 13, 2016. Half day.

28 2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS | www.llnl.gov | info@llnl.gov

8.	 APPENDIX

Support letters (separate files):
•	 Exascale Computing Project
•	 Fermi National Accelerator Laboratory
•	 Fujitsu
•	 Los Alamos National Laboratory
•	 Oak Ridge Leadership Computing Facility
•	 RIKEN Center for Computational Science

Additional supporting information:
•	 Spack website: https://spack.io
•	 Spack video: https://youtu.be/D0p5xpsboK4
•	 Spack code repository: https://github.com/spack
•	 Spack user documentation (including tutorial): https://spack.readthedocs.io/
•	 Spack on Twitter: https://twitter.com/spackpm

https://youtu.be/D0p5xpsboK4
https://github.com/spack
https://spack.readthedocs.io/
https://twitter.com/spackpm

	_Hlk11251603
	_GoBack

