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1.	 PRODUCT/SERVICES CATEGORIES

A.	 Title

Spack

B.	 Product Catagory

Software/Services 

2.	 R&D 100 PRODUCT/SERVICE DETAILS

A.	 Primary submitting organization 

Lawrence Livermore National Laboratory

B.	 Co-developing organizations 

Argonne National Laboratory; Columbia University; École Polytechnique Fédérale de 
Lausanne; Fermi National Accelerator Laboratory; Iowa State University; Kitware, Inc.; 
NASA Goddard Institute for Space Studies, Center for Climate Systems Research; National 
Energy Research Scientific Computing Center; Perimeter Institute; University of Hamburg; 
University of Illinois at Urbana–Champaign; University of Iowa

C.	 Product brand name

Spack
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D.	 Product Introduction 

This product was introduced to the market between January 1, 2018, and March 31, 2019.

This product is not subject to regulatory approval. 

E.	 Price in U.S. Dollars

$1.5M (U.S. dollars) average in annual development costs; open source (free to users)

F.	 Short description 

Spack is an open source software package management tool for scientific computing. It 
simplifies and accelerates building, installing, and customizing complex software stacks. Spack 
unifies software deployment for laptops, clusters, and supercomputers, enabling a community 
of thousands of users to share and leverage over 3,200 scientific software packages.

G.	 Type of institution represented

Government or independent lab/institute

H.	 Submitter’s relationship to product

Product developer

I.	 Photos

Attached inline 

J.	 Video

 https://youtu.be/D0p5xpsboK4 

Fig. 1a

https://youtu.be/D0p5xpsboK4
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3.	 PRODUCT/SERVICE DESCRIPTION

A.	 What does the product or technology do?

Spack automates the process of building and installing scientific software on laptops, high-performance 
clusters, and supercomputers. Modern scientific software combines libraries written in many 
programming languages and is deployed on diverse computing architectures. To achieve the best 
performance in these environments, developers build software directly from source code. This allows 
compilers to optimize code for the unique hardware it will run on. However, building software by hand is 
tedious and error-prone. Many codes comprise tens or hundreds of independently developed libraries. 
Downloading, building, and installing all of these programs is too great of a barrier for most scientists, 
so high-performance computing (HPC) facilities employ teams of experts to install and manage scientific 
software. Spack automates the build workflow without sacrificing software performance or flexibility. It 
reduces deployment time for large software stacks from weeks to hours, and it enables end users and 
developers to install software without the aid of specialized staff.

Spack consists of three key components: (1) a command-line tool, which allows users to build software 
packages on demand; (2) a repository of over 3,200 templated package recipes; and (3) a specification 
language with which users can customize builds.

Spack’s Command-Line Tool

To use Spack, simply download it from GitHub. At the 
command line, the user can run spack list to view and 
query the list of available packages. When they find the 
package they want (e.g., hdf5, a library for scientific data 
analysis), users can invoke spack install hdf5 to begin 
the installation process. Spack downloads source code for 
hdf5’s seven dependency libraries (Figure 1), builds them, 
installs them, and then does the same for hdf5 itself. Thus, 
the hdf5 library is automatically built and optimized for the 
user’s platform, and the user can write code that uses it.

Figure 1: The hdf5 library, with 7 dependencies.
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To accomplish the same tasks manually, the user would need to read hdf5’s documentation, learn 
about its dependencies, find their websites, and download source code for all of them. The user would 
then manually configure, build, and install all of these dependencies along with the hdf5 library. Each 
package may use a different build system, and each build system is likely to require its own package-
specific parameters and options.

Worse, packages may require specific versions of their dependencies, or they may require dependencies to 
use build-time options to enable specific features. If a user installs the wrong version, they will discover after 
the fact that the package’s dependents are incompatible with it, and they will have to rebuild. Likewise, if the 
package is configured in a way that conflicts with dependents’ requirements, it will need to be rebuilt. Even 
if the build process is executed perfectly, HPC users expect to be able to use packages with many different 
compilers and MPI (message passing interface) implementations, so the whole process must be repeated 
for each unique compiler/MPI combination. Moreover, when developers build packages with many options 
by hand, they often forget exactly how different packages were configured. Without detailed record keeping, 
it can be extremely difficult to diagnose issues with the software, or to try new configurations systematically 
(e.g., when tuning for performance).

Building all configurations of even a small package like hdf5—with relatively few dependencies—can take a very 
long time. Larger packages like rminer (Figure 2) can have over 150 dependencies, and it is not reasonable to 
install a package like this without the on-demand automation that Spack provides via simple commands.

						           Figure 2: rminer package, with 150 dependencies.
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Spack’s Package Repository

Spack is able to build complex packages automatically thanks to a large community of contributors. At the 
time of this submission, Spack has over 400 contributors who add recipes—or package files—to its built-in 
package repository. The community has been able to grow so large because Spack makes packages easy 
to write. Package files are written in Python, which is extremely popular and widely known in the HPC 
community. On top of Python, Spack provides its own embedded domain-specific language (DSL), which is 
templated so that package scripts can support many configurations. This allows packages to be simple yet 
flexible enough for HPC users.

Figure 3 shows an example package file for a Lawrence Livermore National Laboratory (LLNL) deterministic 
transport mini-application called Kripke. There are only 18 lines of code in this package, but it allows Kripke 
to be built with different MPI versions, different compilers, and other parameters. The directives in this file 
tell Spack which versions of Kripke are available, which build options (“variants”) are possible, and which 
dependencies (i.e., other packages) are required to build Kripke. The cmake_args and install methods 
contain parameterized build instructions that describe how to interact with the HPC build system and install 
the package when users request different configurations. Here, the user-specified values for the openmp 
and mpi variants are passed as parameters to Kripke’s build system. While most Spack packages can be 
short like this one, logic in the install method can be arbitrarily complex if needed. This allows Spack to 
handle the many nonstandard package build systems in HPC.

Figure 3: Package for LLNL’s Kripke code.

class Kripke(CMakePackage):
    """Kripke is a simple, scalable, 3D Sn deterministic particle
       transport proxy/mini app.
    """
    homepage = "https://computing.llnl.gov/projects/co-design/kripke"
    url      = "https://computing.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

    version('1.2.3', md5='485e6dcdf7cf5d76dca3dd8177b9f430')
    version('1.1',   md5='7fe6f2b26ed983a6ce5495ab701f85bf')

    variant('mpi',    default=True, description='Build with MPI.')
    variant('openmp', default=True, description='Build with OpenMP enabled.')

    depends_on('mpi', when='+mpi')
    depends_on('cmake@3.0:', type='build')

    def cmake_args(self):
        return [
            '-DENABLE_OPENMP=%d' % ('+openmp' in self.spec),
            '-DENABLE_MPI=%d' % ('+mpi' in self.spec),
        ]

    def install(self, spec, prefix):
        # Kripke does not provide install target, so we have to copy 
        # things into place.
        mkdirp(prefix.bin)
        install('../spack-build/kripke', prefix.bin)
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Other package management tools do not have Spack’s level of customization; they typically only allow a 
single configuration of each package—for instance, only the default configuration and default version. 
Spack’s package templates specify the possible ways to build a package, and users build packages in the 
manner that suits their needs without needing to learn the configuration details of every package. When 
Spack installs packages, it still records detailed provenance about all configuration parameters, so that 
builds can be queried, diagnosed, and reproduced later, if needed.

Spack’s Specification Syntax

While Spack package files are written in Python, users of the spack command-line tool do not need to 
understand Python or HPC build systems to leverage the power of Spack’s package repository. For users, 
Spack provides an expressive specification language that allows users to instantiate package templates. 
The language is telescoping—that is, it allows users to opt for default installations in simple cases while 
also allowing them full control over the build process if they require more complicated configurations. The 
specification language is designed to be simple—it is not a full programming language, and while packagers 
will need some experience with Python, end users of the Spack tool do not need to know Python at all.

Figure 4 gives a series of examples. As described above, if a user wants to install the standard hdf5 library, 
they simply run the command spack install hdf5. Spack will choose the latest versions of hdf5 and its 
dependencies, and the user does not need expertise in these details. If the user wants a particular version of 
the hdf5 library and/or the gcc compiler, they can indicate this in the command line—for instance, spack 
install hdf5 %gcc@7.2.0. Spack’s syntax also accommodates other build options such as enabling 
additional features that are disabled by default (+fortran), specifying values for compiler flags (cflags=), 
and designating a target build architecture (target=). If a user wants to see a list of available versions and 
options for hdf5, they can simply run spack info hdf5—they do not need to be familiar with hdf5’s build 
system or to have any prior experience with the package.

Figure 4: Spack’s package specification (spec) language.

Spack syntax Meaning
hdf5 Install the hdf5 package

hdf5@1.10.5 Install hdf5 with specific version 1.10.5

hdf5@1.10.5 %gcc&7.2.0 Install hdf5 1.10.5 using the gcc compiler version 7.2.0

hdf5@1.10.5 %gcc&7.2.0 +fortran Install hdf5 1.10.5 with gcc 7.2.0 and Fortran  
support enabled

hdf5@1.10.5 cflags="-03 -fast" Install hdf5 1.10.5 with specific compiler flags 

hdf5@1.10.5 target=haswell Install hdf5 1.10.5, optimized for Intel Haswell chips

hdf5@1.10.5 ˆmpich@3.2 %gcc@7.2.0 Install hdf5 1.10.5, and link with the mpich  MPI 
implementation at version 3.2, built with gcc 7.2.0



8  2019 R&D 100 Award Entry | LAWRENCE LIVERMORE NATIONAL LABORATORY 

SPACK: A PACKAGE MANAGER FOR HPC SYSTEMS  | www.llnl.gov | info@llnl.gov

Spack’s syntax is expressive enough that these options can be applied to dependencies in addition to the 
root package. For example, many implementations of MPI exist, and Figure 1 shows that one of hdf5’s 
dependencies is openmpi. A user can easily choose to build hdf5 with a different MPI implementation (e.g., 
mpich) by running spack install hdf5 ^mpich. The ^ character here can be read as “depends on”. 
The user can specify the version, compiler, variants, and other options for mpich on the command line 
using the same syntax as for hdf5. Moreover, the user does not have to specify constraints for all of hdf5’s 
dependencies, only the ones they care about. Thus, while the user has control over the entire package 
specification, they do not need to be familiar with the software package’s complete dependency graph to 
install it successfully. Users can limit their concern to the details they care about. Spack handles the rest.

Spack’s specification language is useful not only for single commands; it also enables the configuration of 
large software stacks to be versioned and managed in special spack.yaml files. In the examples in Figure 
4, each command installs a single package and its dependencies. Spack allows multiple specifications to 
be bundled together in a single spack.yaml file (Figure 5), which can be checked into version control so 
that developers can collaborate on common configurations. The entire contents of this file can be built and 
installed reproducibly with a single spack install command, and Spack ensures that each specification and 
its dependencies can coexist in the same environment. This feature is useful at large HPC centers, where 
thousands of packages may need to be installed at once.

 

Figure 5: A spack.yaml file enables users to concisely express  
an entire software stack with specific configurations.

Such configuration flexibility is also useful for building containers. Container solutions like Singularity, 
Docker, and Charliecloud (winner of a 2018 R&D 100 Award) are becoming increasingly popular for 
bundling HPC applications. Using a single spack.yaml file and a single Dockerfile (Figure 6), a user can 
build a container image with many packages by writing only a few lines of code. Without Spack, the same 
scripts would require hundreds or thousands of lines of script code to build all of the components, making 
the container recipes hard to maintain. Spack simplifies the container workflow and allows developers to 
collaborate easily on a common software stack.

 

   spack:
     specs:
	 - hdf5 @1.8.16
	 - openmpi fabrics=libfabric
	 - nalu
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Figure 6: A simple Dockerfile that uses spack.yaml to install a large number of packages. To build such  
a stack manually would require hundreds of lines of script code to download and install each package.

Impact and Availability

From laptops to small clusters to the world’s largest supercomputing sites, the need to rapidly build and 
deploy software stacks is widespread. Todd Gamblin created the first prototype of Spack to automate the 
many tedious software builds he and LLNL colleagues were forced to do manually. Development quickly 
became a grassroots effort as others began to use it. Today, Spack is widely available as open source 
software. Features and improvements are regularly being added to Spack by a broad community of 
contributors. The most recent release (version 0.12) has added key improvements that have led to broad 
adoption at top-tier HPC centers and influential HPC organizations.

Figure 7: ORNL’s Summit supercomputer, ranked #1 on the Top500 list of the world’s fastest supercomputers.

FROM spack/centos:7

WORKDIR /build
COPY spack.yaml .
RUN spack install
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Spack allows software packages comprising hundreds of dependency libraries to be built and installed 
quickly and reliably, which has led to its adoption by a number of prominent code teams, supercomputing 
centers, and software development communities. For example, Oak Ridge National Laboratory (ORNL) 
replaced an existing deployment process with Spack for their #1-ranked Summit supercomputer (Figure 7). 
ORNL deploys over 1,300 software packages for users of the system, and building all of this software used 
to require roughly 2 weeks of work. With Spack, the process is now automated and can be completed in 12 
hours. Summit’s entire stack can now be redeployed overnight.

ARES is an LLNL multi-physics code, used in mission-critical inertial confinement fusion (ICF) simulations. 
ARES relies on a 46-package software stack (Figure 8). Spack has enabled the team to rapidly test this stack 
with new compilers and configurations in preparation for new HPC platforms and environments before they 
arrive. The developers now build and test 36 different configurations of ARES nightly. Before Spack became 
available, this volume and range of testing were not possible to execute automatically, and the development 
team waited to test new compilers until they were needed. Now, because of Spack, the additional testing 
is essentially free. The work of porting the code to a new machine, which used to take weeks, now only 
takes 3 hours thanks to Spack’s automation and ARES’s increased robustness from testing. The ARES lead 
build engineer stated, “It is inconceivable how we would handle the growing number of interdependencies 
between frequently updated library versions, GPU interfaces, and compiler versions without Spack.”

Figure 8: LLNL’s ARES multi-physics code and its 46 dependency libraries (plotted using Spack).

Spack is now used for software deployment on 6 of the top 10 supercomputers in the world1. It has also 
been adopted and the standard deployment tool of several national-level projects. The U.S. Exascale 
Computing Project (ECP) is a $300M/year effort tasked with building a capable software stack for future 
exascale supercomputers. Within ECP, Spack is used to coordinate a hierarchy of software releases for 
multiple supercomputing platforms. ECP is a collaboration of over 1,000 researchers from 17 national 
laboratories, and ECP staff use Spack for both local and ECP-wide software releases. Spack will eventually be

1	  According to the Top500 list of world’s fastest supercomputers at https://top500.org.
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used to deploy over 90 different software products within ECP to HPC centers across the U.S. Department of 
Energy (DOE), and it is critical to the success of the ECP core mission.

In Japan, Spack has been selected as the de-facto deployment tool for the upcoming Fugaku 
supercomputer, formerly known as Post-K. This nearly billion-dollar, national-level project will deliver the 
first supercomputer based on the new ARM scalable vector extensions (SVE) instruction set. Spack was 
chosen for this project due to the ease with which Fujitsu and RIKEN staff were able to use and adapt Spack 
for ARM platforms. Its templated package recipes made software deployment on this new architecture an 
extremely easy task compared to other systems that required package recipes to be entirely rewritten.

Even outside of HPC centers, Spack has had tremendous impact. The high-energy physics (HEP) community, 
based at Fermilab in the U.S. and CERN (the European Organization for Nuclear Research) in Switzerland, 
builds software infrastructure that is comparable in complexity to DOE’s. In this community, Spack has been 
adopted as an end-to-end development tool. Developers use it locally to build their dependencies, and 
administrators use it project-wide to deploy software to HEP’s worldwide network of compute clusters. The 
HEP community has been so pleased with Spack’s capabilities that they have contributed significant features 
to the tool—they believe it is not only useful but also a worthy long-term investment.

These examples indicate an exciting trajectory. Since its initial open source release, Spack’s capabilities, use 
cases, and community engagement have increased by orders of magnitude. In particular, the 2018 release 
(version 0.12; see Product Comparison below) enables reproducible builds with improved concretization and 
lockfiles, features more packages and configurations than ever before, and future-proofs Spack’s growth via a 
permissive license—a significant effort that required buy-in from hundreds of contributors. These combined 
enhancements convinced leadership at ECP, Fujitsu, and RIKEN to adopt Spack for HPC software deployment. 

Worldwide Adoption and Outreach

Spack’s adoption is not confined to just the high end of the HPC market. Its design makes it usable by 
scientists on laptops, workstations, and small clusters in addition to the elite institutions of the world. 
Indeed, from-source builds are difficult to manage, but they have long been the standard way of distributing 
HPC software. Spack is the only tool that gives users the full flexibility and power of building by hand 
along with the automation required to make it quick and easy. Spack’s specification syntax, coupled with 
templated packages, allows users to rapidly build a large set of package configurations, to quickly test and 
converge on the fastest configuration, and to build existing package recipes in new environments. Because 
of its ease of use, Spack’s adoption has been widespread, and we have striven to lower the barriers to 
contribution and to encourage community participation in the project.
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Figure 9: Contributions to Spack over time, by organization. Top: contributions to the Spack core tool;  
Bottom: contributions to Spack’s package repository. (LOC = lines of code.)
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Figure 9 shows the total lines of code in the Spack tool and in its package repository, grouped by 
organization. Spack now has over 400 contributors from over 100 organizations. Though the project started 
at LLNL, the majority of contributions to Spack’s packages now come from organizations including other 
laboratories, academia, and industry. LLNL still maintains the bulk of the core tool with a number of close 
collaborators. Spack’s features, innovative design, and simple package DSL have enabled us to crowd-source 
package maintenance solutions and support this thriving community.

In addition to its core contributors, Spack has thousands of end users all over the world. In December 2018, 
over 1,100 users browsed Spack’s documentation site. Figure 10 shows their locations around the globe. At 
the time of writing, this number had grown to over 2,000 monthly active users. Spack’s worldwide traction 
is a testament to its usefulness within the HPC field and beyond. Spack has filled a longstanding gap in the 
scientific software ecosystem and saved users countless hours of tedious manual configuration and iteration.

Community success relies in a large part on user outreach and education, which has always been crucial 
to Spack’s development. The leadership team travels to user sites around the world (such as to RIKEN, 

Figure 10: Unique users on Spack’s documentation website in a single month. At the end 
of 2018, Spack’s documentation was visited by over 1,100 users per month.
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shown in Figure 11), offering hands-on instruction and step-by-step tutorials. Spack workshops and 
“birds of a feather” gatherings are ubiquitous at several premier international HPC conferences, including 
Supercomputing and ISC High Performance (see the tutorials list under References below). A dedicated 
Twitter account (@spackpm) and a continually active Slack chat instance (spackpm.slack.com) provide 
additional ways to connect with the Spack community.

B.	 How does the product operate?

When a user invokes spack install hdf5, Spack takes a number of steps behind the scenes to ensure 
that hdf5 is properly installed. Essentially, Spack must look at the user’s request, determine what to build, 
and then build it. At first glance, this seems trivial, but the devil is in the details. User specifications are 
vague, in that there are many possible configurations of hdf5, and Spack must find a valid one. Moreover, 
Spack allows many combinations of packages to be built, but most operating systems (OS) and build tools 
are configured so that, by default, the system versions of packages are preferred over customized versions. 
These settings can easily creep into builds and cause incompatibilities, and they make it very difficult for one 
user to get the same results as another when installing a piece of software. Spack is designed to deliver a 
one–two punch: (1) concretization of specifications and (2) isolated, reproducible package builds.

Figure 11: LLNL’s Spack developers met with the RIKEN team in Japan in April 2019.

https://twitter.com/spackpm
https://spackpm.slack.com
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Concretization

Earlier, we discussed Spack’s two main user-facing pieces: the specification syntax, which allows users to 
express their requirements when they install packages, and package files, which provide templated recipes to 
build package specifications. We described how a user could quickly type a command using the specification 
syntax, and have it built using instructions from package files. We mentioned that users need only provide 
the details that they care about, and Spack would handle the rest. The heart of Spack and the key component 
that binds specifications and packages together is the concretizer. Put simply, the concretizer is an algorithm 
that converts abstract specifications from users into complete, concrete specifications that can be built.

The concretization process is shown in Figure 12. A user invokes spack install hdf5@1.10.5 
^mpich@3.2. The specification from the user is converted to a directed acyclic graph with a node for 
each of hdf5’s dependencies. Some nodes (hdf5 and mpich) have constraints. In this case, the constraints 
limit which versions the packages can be built with (1.10.5 and 3.2, respectively). These are the user’s 
requirements from the input specification. Spack constructs a separate graph that encodes constraints from 
the package files. It then intersects these constraints package by package and checks each set of constraints 
for inconsistencies. Inconsistencies can arise if, for example, the user inadvertently requests two versions 
of the same package, or if a package requires (for compatibility reasons) a different version than the user 
requested. Likewise, if the package and the user specified different compilers or variants for particular 
packages, Spack will stop the build process and notify the user of the conflict.

Figure 12: Spack’s concretization process.

Assuming the intersection succeeds, Spack generates a single graph with the merged constraints 
of the user and the package files. Essentially, the user’s request has now been combined with the 
collective knowledge of Spack’s contributors. The next part of the concretization algorithm is iterative. 
If any node in the graph is a virtual dependency, Spack resolves it to a suitable provider of the virtual 
interface, either by creating a new node for the implementation, or by redirecting edges to an existing 
provider in the graph. When Spack has a choice of which provider, version, variant, or compiler to 
use, it consults user and site preferences to determine the “best” possible choice. This may introduce 
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new dependencies to the graph, so we repeat this process until the graph no longer changes. Once all 
parameters for all nodes in the graph have been set, we call the dependency graph concrete.

Concretization is Spack’s way of filling in free variables in the package configuration. When we 
designed Spack, we found that users who built software devoted a large amount of code to searching 
for software and configuration information on the host system in order to fill in details like this. This 
complex code was error-prone and would often find subtly incompatible libraries or unusable versions 
of software installed on the system. Spack’s concretization process takes over this task and ensures that 
all such decisions are made before the package starts building. This key design aspect of Spack enables 
us to rapidly grow our contributor base. Because of concretization, logic in Spack packages can be much 
simpler because it only translates a concrete specification to build instructions; complex configuration 
decisions are left to Spack.

The concretization process enables another of Spack’s key benefits: reproducibility. As explained 
earlier, spack.yaml files (Figure 5) enable an entire software stack to be specified in a single file. 
When the specifications in these files are concretized, Spack generates an additional spack.lock file 
that records the output of the concretization algorithm. This contains specific version and platform 
configuration information for all specifications in the software stack. A user can easily leverage this 
spack.lock file to reproduce a software stack exactly as another user built it. The spack.lock file 
effectively “locks” the versions, build options, and optimization choices produced when the first user 
ran the concretization algorithm.

Isolated, Reproducible Builds

Spack’s internal graph model lets it represent arbitrary software configurations, and concretization allows it 
to generate a complete configuration from a partial specification provided by the user. Spack also provides 
the infrastructure needed to build these arbitrary configurations. This is not trivial: Most build systems 
and OS provide defaults that steer compilers and other tools towards the default versions of libraries and 
programs used in a build. Because of this, when users build software by hand, it is easy to accidentally use 
incompatible versions of libraries and tools. Spack takes a number of measures—including RPATH linking 
and compiler wrappers—to ensure that the build environment is clean, so that two users building the same 
concrete specification in different environments are sure to get the same result.

RPATH Linking

When one library needs to call code from one of its dependencies, dependency libraries are found by 
looking in default locations set by either the OS or the user. These settings are designed for systems 
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where only one version of a given library will be installed, and they can result in incorrect code in 
HPC environments, where the same library may need to be built in different, incompatible ways for 
different applications. For example, a parallel mesh partitioner may use a parallel version of the hdf5 
library, while a different application that uses the mesh may use a sequential version of hdf5. These 
two hdf5 versions are incompatible, so one code cannot use the hdf5 version preferred by the other. 
This means we cannot run the mesh partitioner in the same environment with the application, so they 
cannot be used together in a common workflow.

To avoid this conflict, Spack ensures that all installed libraries “know” which dependencies they were 
built with using a technique called RPATH linking. An RPATH is a special location embedded in a library or 
executable code that tells the OS where to look for dependencies. Each package installed with Spack has 
RPATHs for all of its dependencies, so when it runs, it will always know where to find the right libraries, 
and users cannot accidentally run Spack-built programs with conflicting code. Whether managing tens 
or hundreds of dependencies, this failsafe solution is extremely useful, as the OS does not know about 
user-installed dependencies, and users cannot be expected to remember and configure the locations of 
hundreds of library versions.

Compiler Wrappers

To ensure that RPATHs are set on executables and libraries when they are created, and to enable 
different compilers to be easily swapped into a build, Spack uses a special wrapper script in its build 
environment. This feature prevents a number of errors. First, many default environment settings 
from the OS and the user can creep into a build environment. Certain variables like LD_LIBRARY_PATH, 
CFLAGS, and CC, which are commonly set by users, can cause a build to inadvertently change its 
behavior by using the wrong libraries, the wrong compiler flags, or the wrong compiler. Spack 
clears these and other variables from the user environment before it builds, and in place of the 
real compilers, it injects its own wrapper scripts. When the build calls the wrapper script as though 
it were the real compiler, Spack adds explicit search paths and RPATHs for its own libraries to the 
command line before calling the real compiler with the full set of arguments. This process overrides 
any environment settings and ensures that Spack packages are built as intended. It also removes part 
of the burden of configuration from package authors, as they can leave the configuration of most 
building and linking options to the compiler wrappers. Users do not need to write code to add extra 
arguments to compilers because Spack has already done so.

In addition to helping isolate builds, Spack’s compiler wrappers allow the user to inject compiler 
optimization flags into its builds. This means users can rapidly iterate on optimization settings for their 
software stack as well as on other configuration options.
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C. 	 Product Comparison

There are many software package management tools on the market, both in and outside the scientific 
computing space. Package management systems have existed since the late 1990s, when products like 
RPM and APT were created to manage dependencies among binary packages in Linux distributions. These 
and other systems are present in nearly all Linux distributions to this day. While revolutionary at the 
time, these package managers assume that users have root privileges on the system; however, users are 
usually only allowed unprivileged user accounts on nearly all high-performance clusters. This alone makes 
these tools unusable in HPC environments. Spack can operate in a completely unprivileged environment. 
System package managers also assume that software is only installed in a single location on the system, 
which prevents them from installing multiple configurations of the same package. Further, because they 
manage only binary packages, the software distributed with these systems is built without architecture-
specific optimizations in order to be as portable as possible. This prevents them distributing software that 
takes advantage of high-performance hardware, like the new hybrid architectures found at many top-tier 
supercomputing centers.

Only a few package managers seriously target the scientific computing space: Gentoo, Nix/Guix (two 
very similar systems), Conda, EasyBuild, and Spack. Spack’s key advantage over all of these tools is its 
flexibility and ability to build arbitrary configurations from scratch. This allows users to build any packages 
they like, at any version, and to optimize these packages for the machine. Users do not need to know 
any programming to do this; they need only download the Spack tool and learn its specification syntax. 
Spack’s flexibility also allows it to target a much broader set of users than do other tools. It is usable by 
non-programmers, developers, and administrators, while these other tools have limitations that limit 
them to one or another of these groups.

Gentoo is derived from the traditional system package managers described above, but additionally it allows 
users to build from source to optimize for specific hardware. Gentoo’s sub-project Gentoo Prefix can be run 
in unprivileged mode. However, Gentoo Prefix does not support true multi-version installation, as it limits 
software installation to a single location (the “prefix”). Gentoo Prefix is entirely self-contained, which means 
that creating a Gentoo environment on an HPC system can take 12 hours or more. To support multi-version 
installation, a user would need to install several such environments, which is not tractable and wastes space. 
In contrast, a user can install their first package within minutes of downloading Spack.

Nix and Guix are so-called “functional” package managers, allowing packages to be installed in arbitrarily 
many configurations. They use similar directory isolation schemes to Spack, but both tools require root 
access to the machine to build packages. Further, they do not support a templated package syntax or 
anything like Spack’s specification language. Users must learn functional programming languages like 
Nix’s custom expression language and Guile, which are not widely known or used in the HPC community 
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or the general programming community, and each “package file” in these systems corresponds to a single 
configuration. Building new versions, changing configuration options, or swapping in compilers is not 
feasible. Further, these tools do not integrate well with the optimized MPI or compiler packages on HPC 
systems. Adapting to these systems would require rewriting packages, while Spack can swap in a new 
compiler or configuration easily due to its templated packages.

Conda is a binary package installation system rapidly gaining traction in the scientific computing 
community. It targets desktop scientific environments, mostly in the Python ecosystem. While Conda 
packages a large range of scientific software, it does not build packages from source. Packagers must 
build Conda packages separately from the tool itself. They can do this by submitting to a build farm in 
the cloud, but this makes Conda ill-fitted for developers, who need to manage dependency versions and 
configurations at very fine granularity. It also makes it difficult for Conda packages to be optimized for 
the machines they run on. Conda’s mainline packages include limited machine-specific optimization, 
and special “channels” are available with GPU versions of some packages. However, making packages 
from different Conda channels work together is difficult because the binaries are built in incompatible 
ways. Porting to new types of machines with Conda is difficult because Conda packages must be 
built with an entirely separate tool. Further, Conda does not provide any integration with the high-
performance MPI implementations used on HPC systems, so its packages typically do not use the 
resources available on HPC machines and, therefore, perform poorly. 

Spack’s main competitor in the HPC space is EasyBuild. EasyBuild is a software management system designed 
for HPC administrators to simplify software deployment. However, EasyBuild does not offer the flexibility 
of package installation that Spack does. Like Nix and Guix, each EasyBuild package configuration requires a 
configuration file, and  no templating feature exists. EasyBuild fixes versions for its dependencies, so if users 
want to generate new versions of packages on demand, they must edit not just one but potentially tens or 
hundreds of configuration files to change dependency versions across the whole software stack. Indeed, 
EasyBuild supports around 1,700 software packages (compared to Spack’s 3,200), but it requires over 7,000 
configuration files to support a more limited number of configurations of these packages.

Using different compilers and MPI versions within EasyBuild also requires generating a new, full stack of 
configurations. Essentially, EasyBuild makes the users perform the concretization process that Spack has 
automated. EasyBuild has only limited support for external packages; it allows externals to be included in 
builds if they are loadable via an environment module, but Spack allows essentially any external package to 
be integrated with builds, even if no module is available. EasyBuild has managed to make inroads among 
HPC administrators, but it has not appealed to developers and end users the way Spack has.  
Even among administrators, EasyBuild is typically used among small cluster administrators who are 
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happy with settings close to the default configuration. Spack has made inroads both with small cluster 
administrators and among developers and administrators of high-end machines, where quickly 
customizing the stack is necessary and highly valued.

In addition to the features already mentioned, Spack is designed to be easy to install. Because Spack is 
often the first tool that users download in order to install other packages, it is important that Spack itself 
have very few external dependencies. We have therefore gone to great lengths to include all of Spack’s 
needed dependencies in the Spack distribution. All the user needs to do is clone a single repository and 
have Python installed (along with some basic Unix utilities provided in all major distributions), and Spack 
is ready to run immediately. It does not require compilation, nor does it rely on environment modules 
to do its builds. EasyBuild, on the other hand, requires that the user have the environment module 
system and several other dependencies installed in advance. These requirements are common in HPC 
environments but make installation of EasyBuild difficult on laptops or other workstations. Further, 
EasyBuild requires that the user download not one but four distinct repositories and set numerous 
environment variables before it can be used.

Spack is often compared to the environment module system, which allows administrators to easily 
expose a large number of package configurations to users. Environment modules are popular on HPC 
systems because they let users easily load different versions of packages into their environment. However, 
environment modules are not a package management system—they only manage the user’s environment 
after packages are installed. There is no build support, common naming scheme, or central repository 
of environment modules; facilities have historically written their own modules by hand after installing 
packages. Spack and EasyBuild both support automatically generating module files for all installed packages, 
and eliminate the need for facilities to maintain these files manually.

Among competing package managers, Spack is the only tool that offers reproducible lock files (spack.lock, 
Figure 6). This feature is becoming increasingly popular among language-specific package managers (e.g., 
npm, cargo, bundler, pipenv), which are geared toward developers. These tools deal only with locking 
package versions and only within a single language’s software ecosystem. No existing tool provides 
this configuration-locking functionality for multiple compilers, multiple languages, and multiple build 
configurations like Spack. Moreover, no other tool provides this functionality for C, C++, or Fortran—
the key languages used in high-performance programming. These languages have many different 
implementations and no standard build system, yet Spack provides a common configuration language for 
all of them and is the first system to allow builds to be reproduced with a workflow as simple as those for 
language-specific tools.

Finally, Spack’s license is a major advantage over many of its competitors. While all of the systems 
described here are free and open source software, only Spack and Conda use permissive licenses that 
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permit nearly unrestricted use of the software. Spack is dual licensed under either the Apache-2.0 
or MIT license. RPM, APT, Gentoo, Guix, and EasyBuild all use the GNU General Public License 
(GPL), which means that organizations that build on them must release the source code for any 
software that uses the package manager. Nix uses the Lesser GPL (LGPL), which requires that 
organizations release the source code only for changes to Nix itself. As a result, many companies 
are wary of integrating these tools into their software stacks, as license compliance can be murky 
when integrating GPL-licensed code into proprietary systems. Spack is licensed to be easily used 
by as broad an audience as possible. This was a strategic choice; we aim to be vendor-friendly so 
that Spack can be easily integrated into high-end HPC systems. We believe our licensing strategy 
enables us to grow Spack’s contributor base as rapidly as possible, and this will ultimately 
result in better open source software regardless of whether some contributors choose to build 
proprietary solutions on top of Spack.

C.	 Competitors

Product Manufacturer License
Spack Spack Project Apache 2.0 or MIT

RPM Red Hat GPL-2.0

APT Debian Project GPL-2.0

Gentoo Gentoo Foundation GPL-2.0

Nix Nix Project LGPL-2.1

Guix GNU Project GPL-3.0

Conda Anaconda, Inc. BSD-3-clause

EasyBuild HPC University of Ghent GPL-2.0

Lmod Texas Advanced Computing 
Center (TACC)

MIT

Environment Modules INRIA Bordeaux LGPL-2.1
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D.	 Comparison summary

Feature Spack RPM/APT Gentoo Nix/Guix Conda EasyBuild

Users and systems

Target audience
Users, 

developers, 
admins

Admins, 
developers

Admins, 
developers

Admins, 
developers Users Admins

Platform support Linux, 
MacOS, Cray Linux Linux Linux,  

MacOS

Linux, 
MacOS, 

Windows

Linux, 
Cray

Usable without root 
privilege

Installation requirements Python
Included 

with Linux 
distribution

Many-hour 
build

Download 
binary

Download 
binary

Extensive, 
difficult to 

install

Multi-configuration 
installation

Build process and configuration

Command-line build 
specification syntax

Reproducible lockfiles

Build from source

Optimized builds Limited

RPATH linking Optional

Compiler wrappers inject 
optimization flags 

Easily swap compilers with 
wrappers

Flexible concretization

Optional dependencies

Ease of changing stack
  

Single 
command

Re-write 
packages

Re-write 
packages

Re-write 
packages

Re-write 
packages

Re-write 
packages

Package repository

Number of packages 3,200+ 10,000+ 10,000+ 10,000+ 5,000+ 1,700+

Package recipe language Python DSL RPM SPEC 
format RPM-like Nix expressions  

Guile (Guix) RPM-like Python

Templated packages

Binary packages

Relocatable binaries

Integrate external system 
packages

Via Modules 
only
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One benefit of Spack’s large and varied community is that opportunities always arise to 
learn about and address new use cases. Having a global user base also means Spack’s 
limitations come to the foreground quickly, so we are able to prioritize and test new 
features as development evolves. Currently Spack has one primary limitation: The 
concretizing feature uses heuristics instead of a full backtracking solve for NP-hardness—a 
class of nondeterministic polynomial problems resolved by Spack’s decision algorithms. In 
other words, dynamic dependency resolution can occasionally fail to find a solution when 
one is possible, and sometimes Spack may rebuild new versions of packages when it does 
not need to. Fortunately, in most cases, the current concretization algorithm is sufficient, 
and we are reworking the algorithm for our next release. Spack’s efficient handling of the 
overall work of building and installing a complex scientific software stack saves users many 
hours of tedious labor, and the user’s effort to overcome this limitation manually is minor. 
When the concretizer fails to find a solution, a user can simply supply more constraints in 
Spack’s specification language to help it find the desired configuration.

E.	 Limitations 

4.	 SUMMARY 

Building complex software is a challenge even for seasoned professionals. Next-
generation HPC architectures will only increase the complexity and dependencies 
of scientific software. This in turn will increase demands on software deployment 
time and configurations. As a software package manager for high-performance 
scientific computing applications, Spack is easy, versatile, and scalable. Spack’s main 
goal is to simplify the process of managing scientific software for administrators, 
developers, and end users alike. To do this, Spack automates the build process 
for scientific software packages and allows users to easily download, install, and 
manage packages with hundreds of dependencies. It automates the build workflow 
so that users can focus on their scientific work and speeds up installation and 
manages multiple configurations efficiently. Spack is ready to run immediately 
after download, and users benefit from the combined knowledge of the Spack 
community. Spack’s flexibility and large community have made achievements at 
major supercomputing centers possible. Spack originated at LLNL, which continues 
to support it. Once Spack became available as open source, other organizations 
have contributed to its ongoing development.
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Phone: 925-422-9319
Email: gamblin2@llnl.gov
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Title: PhD student
Organization: Argonne National Laboratory/ 
University of Illinois at Urbana–Champaign
Phone: 607-972-5364
Email: adamjs5@illinois.edu

Name: Massimiliano Culpo
Title: Software developer
Organization: École Polytechnique Fédérale de Lausanne
Phone: 41-21-69-31994
Email: massimiliano.culpo@epfl.ch

Name: Patrick Gartung
Title: Programmer analyst
Organization: Fermi National Accelerator Laboratory
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Organization: Iowa State University
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Columbia University
Phone: 212-678-5581
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Name: Mario Melara
Title: Computer systems engineer
Organization: National Energy Research Scientific 
Computing Center
Phone: 925-858-0436 
Email: mamelara@lbl.gov

Name: Erik Schnetter
Title: Research technologies group lead
Organization: Perimeter Institute
Phone: 519-569-7600 x7032
Email: eschnetter@perimeterinstitute.ca

Name: George Hartzell
Title: Bioinformatics, software engineering,  
and dev-ops
Organization: Independent consultant
Email: hartzell@alerce.com
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8.	 APPENDIX

Support letters (separate files):
•	 Exascale Computing Project
•	 Fermi National Accelerator Laboratory
•	 Fujitsu
•	 Los Alamos National Laboratory
•	 Oak Ridge Leadership Computing Facility
•	 RIKEN Center for Computational Science 

 

Additional supporting information:
•	 Spack website: https://spack.io 
•	 Spack video: https://youtu.be/D0p5xpsboK4
•	 Spack code repository: https://github.com/spack
•	 Spack user documentation (including tutorial): https://spack.readthedocs.io/
•	 Spack on Twitter: https://twitter.com/spackpm

https://youtu.be/D0p5xpsboK4
https://github.com/spack
https://spack.readthedocs.io/
https://twitter.com/spackpm
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